Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Osong Public Health Res Perspect ; 13(1): 15-23, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1732598

ABSTRACT

Microbial coinfections can increase the morbidity and mortality rates of viral respiratory diseases. Therefore, this study aimed to determine the pooled prevalence of fungal coinfections in coronavirus disease 2019 (COVID-19) patients. Web of Science, Medline, Scopus, and Embase were searched without language restrictions to identify the related research on COVID-19 patients with fungal coinfections from December 1, 2019, to December 30, 2020. A random-effects model was used for analysis. The sample size included 2,246 patients from 8 studies. The pooled prevalence of fungal coinfections was 12.60%. The frequency of fungal subtype coinfections was 3.71% for Aspergillus, 2.39% for Candida, and 0.39% for other. The World Health Organization's Regional Office for Europe and Regional Office for Southeast Asia had the highest (23.28%) and lowest (4.53%) estimated prevalence of fungal coinfection, respectively. Our findings showed a high prevalence of fungal coinfections in COVID-19 cases, which is a likely contributor to mortality in COVID-19 patients. Early identification of fungal pathogens in the laboratory for COVID-19 patients can lead to timely treatment and prevention of further damage by this hidden infection.

3.
Br J Nutr ; 127(5): 773-781, 2022 03 14.
Article in English | MEDLINE | ID: covidwho-1368882

ABSTRACT

Numerous studies have revealed strong relationships between COVID-19 and inflammation. However, the imminent link between diet-related inflammation and the COVID-19 risk has not been addressed before. So, we explored the capability of the Energy-Adjusted Dietary Inflammatory Index (E-DII) to predict the inflammatory markers, incidence and severity of COVID-19. We conducted a case-control study consisting of 120 adults; they had been admitted for COVID-19 at hospital during June and July, 2020. The E-DII score was calculated based on the dietary intake, which was evaluated by a 138-item semi-quantitative food frequency questionnaire. Serum levels of inflammatory markers including the Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and White blood cells (WBCs) differential were measured. Severity of disease was assessed by chest radiology criteria. Patients with the maximum pro-inflammatory energy adjusted E-DII score had 7·26 times greater odds of developing COVID-19, as compared to those in tertiles 1 (E-DII T3v. E-DII T1: OR = 7·26; 95 % CI 2·64 to 9·94, P < 0·001). Also, a positive association between E-DII and C-reactive protein (CRP) was observed (BE-DII = 1·37, 95 % CI 0·72, 2·02), such that with each unit increase in E-E-DII, the CRP levels were increased by 1·37 units. Furthermore, a significant association was found between E-DII and the severity of disease (BE-DII = 0·03, 95 % CI 0·01, 0·06. 0·024). Patients consuming a diet with a higher pro-inflammatory potential were at a greater risk of COVID-19 occurrence; also, the severity of disease was elevated with a high score inflammatory diet.


Subject(s)
COVID-19 , Case-Control Studies , Diet , Humans , Inflammation , Risk Factors , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL